Midterm I Exam

15-122 Principles of Imperative Computation
Frank Pfenning, Tom Cortina, William Lovas

Name:

Instructions

September 30, 2010

Andrew ID:

e This exam is closed-book with one sheet of notes permitted.

e You have 80 minutes to complete the exam.

There are 4 problems.

Read each problem carefully before attempting to solve it.

Consider writing out programs on scratch paper first.

Searching

Stacks

Modular arith.

&sorting | &queues | Linked lists & VM
Prob1 | Prob2 | Prob3 | Prob4 || Total

Score

Max 40 50 30 30 150

Grader

2 Stacks and Queues (50 pts)

Consider the following interface to stacks, as introduced in class.

typedef struct stack* stack;

stack s_new(); /* 0(1); create new, empty stack */
bool s_empty(stack S); /* 0(1); check if stack is empty */
void push(int x, stack S); /* 0(1); push element onto stack */
int pop(stack S); /* 0(1); pop element from stack */

In these problem you do not need to write annotations, but you are free to do so if you wish. You
may assume that all function arguments of type stack are non-NULL.

Task 1 (10 pts). Write a function rev(stack S, stack D). We require that D is originally empty.
When rev returns, D should contain the elements of S in reverse order, and S should be empty.

void rev(stack S, stack D)
//@requires s_empty(D);
//@ensures s_empty(S);

{
\
while (Usdael_ empd’g (s
wsh(pep(S), DY)
P sh PoplS),)
As a variant on this question, consider a similar function, except
) that we want S to be in its orginal state at the end. Consider how

we could write this code:

(a) Limited to the interface functions above.
(b) Using the underlying implemenation, as used previously.

Now we design a new representation of queues. A queue will be a pair of two stacks, in and
out. We always add elements to in and always remove them from out. When necessary, we can
reverse the in queue to obtain out by calling the function you wrote above.

struct queue {
stack in;
stack out;
+;

typedef struct queue* queue;

Task 2 (10 pts). Write the enq function.

void enq(queue Q, int x) {

posh (R,)

J

Task 3 (10 pts). Write the deq function. Make sure to abort the computation using an appropriate
assert(_,_) statement if deq is called incorrectly.

int deq(queue Q) {

Idea: Dequeue by popping off of Q->out. If (and only if)
stack_empty(Q->out), pop all element from Q->in and push them
on Q->out. __3

Reason over why t
this maintains CP ‘

the correct order.
e D

Midterm I Exam

15-122 Principles of Imperative Computation

André Platzer

Name:

Instructions

February 23, 2012

Andrew ID:

e This exam is closed-book with one sheet of notes permitted.

¢ You have 80 minutes to complete the exam.

e There are 4 problems.

e Consider if you might want to skip a problem on a first pass and return to it later.

¢ And most importantly,

Do not spend too much time on any one problem.

Read each problem carefully before attempting to solve it.

DON’T PANIC!

Ananda Gunawardena

Mod.arith. Safari Contracts Big O
Prob1 | Prob 2 | Prob 3 | Prob 4 | Total

Score

Max 20 35 25 20 100

Grader

1 Modular Arithmetic (20 pts) _ X — Ao)(X \

In CO, values of type int are defined to have 32 bits. In this problem we work with a version of
CO0 where values of type int are defined to have only 7 bits. In other respects it is the same as C0.
All integer operations are still in two’s complement arithmetic, but now modulo 27. All bitwise
operations are still bitwise, except on only 7 bit words instead of 32 bit words.

Task 1 (10 pts). Fill in the missing quantities, in the specified notation. | 0 O O O O O

- (2 ©
a. The minimal negative integer, in decimal: (0 - D\
b. The maximal positive integer, in decimal:

c. —4,in hexadecimal: 0Ox 7C \ l |] \ O O
d. 44, in hexadecimal: 0x gz C —Sc) 4 g-]—-(,‘ L—-———)L___.———j

7 C
e. 0x48, in decimal: i O lD] OD
[001000 « ~ (o + ¢ L

Task 2 (10 pts). Assume int x and int y have been declared and initialized to unknown values.
For each of the following, indicate if the expression always evaluates to true, or if it could some-
times be false. In the latter case, indicate a counterexample in the C0 dialect described here by
giving a value for x and y that falsifies the claim. You may use decimal or hexadecimal notation.

a. x> x - 1 F f”l"’——Wl“"()

b. "(x = ("x)) == -1 01“‘35 fFQ‘\S@
T Although it is possible that

C. x+(y+1)-2%(x-1)-3 == -x+y we will have overflow in
K3yil-9%9-3 - =X + (c), we are guaranteed
d. (x!\‘l_x Il yi=-y) || x==y ‘6 that overflow behaves

predicatably according to
modular arithmetic.

So, even if overflow is
involved, it will affect both
expressions and they will
still evaluate to the same
value.

e. x <= (1<<(7-1))-1

4 Big-O (20pts)

Task 1 (10 pts). Define the big-O notation _F () 4 C L\ (,{)
f(n) € O(h(n)) if and only if No 2 O / C > O S.t n) =

and briefly state the two key ideas behind this definition in two sentences and briefly explain why

and how it captures those key ideas:
for el a > g
-

Task 2 (10 pts). For each of the following, indicate if the statement is true or false.

(a) O 1024nlogn + 1010) = OO <-|——

(b) O(n*log(n)) C O(n)
() O(n) C O(n *log(n)) T

(d) O(3*logan) = 0O(2*logzn) (r

— -

——

(e) O((10logn + 3 % n) x n?) C O(log(n?)) ‘/

10 n2 loj A+ I

