Recitation 14, 10/17/12 15-122D Alex Cappiello

Consider the following client implementation:
typedef struct foo* elem;
typedef int key;
struct foo {
int key;
int data;
bi

int hash (key k, int m) {

Q

return k $ m; // This is a terrible hash function.

} ——

bool key equal (key k1, key k2) {
return k1l == k2;

key elem key (struct foo *x) {
return x->key;

Suppose we’re inserting the fol : i in order:
(33, 54), (24, 77), (92, 12), (54, 31) (92, 92)

Suppose we want to look up an element in our hash table, but we don’t
have its key. Instead, we have to do a lookup based on its data wvalue.
Building off of the previous example, the data value would be given by
e->data. Assume you have the following:

typedef int vtype;

bool value equal (vtype vl, vtype v2);
that correctly does what its name suggests. Fill in the following
function that does the task described above.
(There is intentionally more space than is needed).

elem ht search (ht H, vtype v)
//@requires js ht(H);

//@ensures js ht(H);
{/@ensures \result == NULL || ht_lookup(elem_key(\result)) == \result;

Note: this second postcondition would be redundant if we had
a stronger is_ht() (but perhaps still useful to write).

The general approach:

for loop over ht array

while loop over linked list

in each node, check value_equal
if equal -> return
else keep looking

return NULL if nowhere

Code will be posted on the main page for the recitation.

