
15-122: Principles of Imperative Computation

Recitation 2 Solutions Josh Zimmerman

GCD
1 int fast_gcd(int x, int y)
2 //@requires x > 0 && y > 0;
3 //@ensures \result == ref_GCD(x,y);
4 {
5 int a = x;
6 int b = y;
7 while (a != b)
8 //@loop_invariant a > 0 && b > 0;
9 //@loop_invariant ref_GCD(a, b) == ref_GCD(x, y);

10 {
11 if (a > b) {
12 a = a − b;
13 }
14 else {
15 b = b − a;
16 }
17 }
18 return a;
19 }

This is certainly faster, but does it actually work? Here’s the proof:

Solution:

Part 1: Precondition implies loop invariant

First loop invariant: a > 0 && b > 0

By precondition, x > 0 && y > 0. By line 5, a == x and by line 6, b == y. Thus, a > 0 && b > 0.

Second loop invariant: ref_GCD(a, b) == ref_GCD(x, y)

We know that a == x and b == y, so thus ref_GCD(a, b) == ref_GCD(x, y)

Part 2: Preservation of loop invariants

First, assume that both invariants hold at the start of some iteration.

We have three cases: either a > b, b > a, or a == b.

If a == b, then we don’t enter the loop and so we don’t need to consider this case, since there are no
more checks of the loop invariants after the last one that succeeded by assumption.

If a > b, we enter into the case on lines 11-13.

For the first loop invariant, we know that b’ = b and that a’ = a - b. Since b > 0, b’ > 0 and since
a > b, we know that a’ > 0.

1



For the second loop invariant, we can apply the mathematical observation made above: If a > b,
gcd(a, b) = gcd(a− b, b).

Since a > b, we know that ref_GCD(a, b) = ref_GCD(a - b, b) and since a’ == a - b (and b’
== b), we know that ref_GCD(a, b) = ref_GCD(a’, b’). By our assumption, ref_GCD(a, b) ==
ref_GCD(x, y), so ref_GCD(a’, b’) == ref_GCD(x, y) by the transitivity of equality.

The case when b > a is essentially the same, but switching the letters we use.

Thus, the loop invariant holds at the end of the iteration.

Part 3: Loop invariant and negation of the loop exit condition imply postcondition

By the loop invariant, when we exit the loop ref_GCD(a, b) == ref_GCD(x, y). Further, by the
negation of the loop exit condition, a == b. Since gcd(a, a) = a for all positive a, we know that
ref_GCD(x, y) == ref_GCD(a, b) == a. We return a, which is ref_GCD(x, y) so therefore our
postcondition is satisfied if the loop terminates.

Part 4: Termination of the loop

We’re almost done now—we just need to argue that the loop does, in fact, exit.

The argument for this is somewhat subtle. The trick is that we look at the quantity max(a, b). By the
first loop invariant, we know that max(a, b) > 0. So, if we can show that after every iteration of the
loop, max(a′, b′) < max(a, b), then we know that eventually the loop must exit since max(a, b) can never
go below 1. Now, let’s look at that proof.

We again have three cases: either a > b, b > a, or a == b.

If a > b, then max(a, b) = a, and max(a− b, b) < a. (Since b < a and a− b < a.) Thus, max(a′, b′) <
max(a, b) in this case.

If a == b, then we exit the loop and terminate.

If b > a, then we have an essentially identical case to when a > b and can argue that max(a, b) decreases
simply by changing a few letters.

Therefore, \result == ref_GCD(x, y).

2



Another buggy program

Solution: Here’s the annotated version of the source:

1 int add (int x, int y)
2 //@ensures \result == x + y;
3 {
4 int a = x;
5 int b = y;
6 while (b >= 0)
7 //@loop_invariant a + b == x + y;
8 {
9 a++;

10 b−−;
11 }
12 // We need b == 0 here because we can’t get a strong enough statement from
13 // just the loop invariant. If b < 0 , the loop invariant would be
14 // true, and the result might not be correct from just the loop invariant.
15 //@assert b == 0;
16 return a;
17 }

Note that the //@assert fails when we call add(1, 1). Adding some print statements to investigate
this leads us to the discovery that b == -1 when we check the //@assert . Now, if we look at the loop
condition again, we can see that it is incorrect. It should say while(b > 0) — otherwise, we’re adding
one too many times. So, we fix that, and we see that add(1, 1) works with no annotation failures and
gives 2, as expected.

We’re not done, though—we should still try to prove that the function always works, because it’s possible
that there’s another case that doesn’t work.

We don’t have any //@requires statements yet, so let’s just try to prove that add works for all integers
x and y.

Before the first iteration of the loop, a == x and b == y, so a + b == x + y.

Now, we want to prove that if a + b == x + y, then a’ + b’ == x’ + y’ (we write the values of a
and b after the next iteration as a’ and b’).

After the loop, a’ == a + 1 and b’ == b - 1. (Note: these calculations may overflow, but that’s OK
since the overflow would happen if we did x + y as well.) This means that a’ + b’ == a + 1 + b -
1, which is equal to a + b. By our assumption, that’s equal to x + y.

Therefore, our loop invariant holds. Now, we need to prove that the //@assert holds. We know by the
loop exit condition that !(b > 0), so therefore b <= 0. However, there’s nothing stopping b from being
negative at this point, which is problematic. We need to require y >= 0 to ensure a non-negative result
at the end of the function. It’s also helpful to add a loop invariant that b will always be non-negative.
At this point, after the corrections we’ve made, here’s our add function:

3



1 int add (int x, int y)
2 //@requires y >= 0;
3 //@ensures \result == x + y;
4 {
5 int a = x;
6 int b = y;
7 while (b > 0)
8 //@loop_invariant a + b == x + y;
9 //@loop_invariant b >= 0;

10 {
11 a++;
12 b−−;
13 }
14 // We need b == 0 here because we can’t get a strong enough statement from
15 // just the loop invariant. If b < 0 , the loop invariant would be
16 // true, and the result might not be provably correct based on
17 // just the loop invariant.
18 //@assert b == 0;
19 return a;
20 }

We must now prove that the second loop invariant holds. It’s true initially by the precondition and the
fact that b == y before we enter the loop. Now, assume that it’s true before some iteration of the
loop. We also know that, since we’re executing another iteration of the loop, b > 0 by the loop guard.
Further, b’ = b - 1. Since b > 0, b’ >= 0 and the loop invariant holds.

Now, let’s return to proving that the //@assert holds. By the loop invariant, b >= 0. Since !(b >
0), or in other words b <= 0 as well, we know that b == 0.

Now, we want to show that that fact combined with the loop invariant implies that the function is
correct.

We know that a + b == x + y and that b == 0. Thus, a == x + y.

Finally, we should prove that the function always terminates. b >= 0 when we start looping, and we
decrease b each iteration of the loop. Thus, b will eventually be 0 and we’ll exit the loop.

4


