
15-122: Principles of Imperative Computation

Recitation 3 Josh Zimmerman

Hexadecimal notation
Just as we can represent numbers in base 2 (binary), we can represent numbers in other bases. Base 16, or hexadecimal
(often called hex), is one such base. For clarity, hex numbers are written with "0x" at the beginning, so it’s always
possible to tell what base they are. Hex is useful because it allows us to compactly represent binary numbers: each
hex digit corresponds to exactly 4 bits. For example, 0x4a = 01001010.

It’s worth noting that any base that is a power of 2 would have this property: in base 8, each digit represents 3 bits
and in base 32 each digit represents 5 bits. Hex is used partially because 4 evenly divides word sizes on almost all
computers (almost all computers in use today are 8, 16, 32, or 64 bit systems) and partially because the number of
digits needed grows slower than decimal while not needing to use many more characters.

Since hex is a higher base than base 10, we need more symbols for digits. Here’s a table of hex values and their
binary and decimal equivalents. (Note: the letters in hex numbers can be written in uppercase or lowercase).

Hex 0 1 2 3 4 5 6 7 8 9 a b c d e f
Bin. 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Dec. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Formally, a hex number n that is d digits long is equal to
∑d−1

i=0 ni16
i. (If working with that definition, keep in mind

that a letter in a hex number corresponds to an integer between 10 and 15, as given in the above table.)

For an example, convert the hex number 0x7f2c to binary.

Two’s Complement
To represent negative numbers, we use the two’s complement system.

In unsigned (binary) arithmetic, a number n with k bits dk−1 . . . d0 would be: n =
∑k−1

i=0 di ∗ 2i (di is the ith digit
of n, where the 0th digit is the rightmost one)

For example, in 4-bit unsigned arithmetic, 1011 = 1 ∗ 20 + 1 ∗ 21 + 0 ∗ 22 + 1 ∗ 23 = 11.

In two’s complement, we modify this to allow us to have negative numbers. We make half of the numbers we represent
nonnegative and half of them negative. (0 is neither positive nor negative. If you have an n-bit two’s complement
representation, there are 2n−1 − 1 strictly positive numbers and 2n−1 negative numbers. This means that two’s
complement numbers that are n bits long must be at least −2n−1 and can be no more than 2n−1 − 1.)

Two’s complement arithmetic works like a clock (modularly), just like unsigned arithmetic does. Both of the below
“clock” diagrams show 4-bit two’s complement numbers. The left one shows the way they are interpreted and they
way humans understand them and the right one shows the way they are represented as binary in the computer.

0 0000
-1 1 1111 0001

-2 2 1110 0010
-3 3 1101 0011

-4 4 1100 0100
-5 5 1011 0101

-6 6 1010 0110
-7 7 1001 0111

-8 1000

1

Except for 0 and -8, each number is across from its negative in both diagrams. Something else interesting to note
here is that all negative numbers start with a 1 and all non-negative (positive and 0) numbers start with a 0. This is
not just a coincidence, and we’ll see why when we look at the formal definition of two’s complement.

To find the negative of a two’s complement number x, we simply flip all of the bits (so 1 becomes 0 and 0 becomes
1), and add one. The operator for flipping bits in C0 is ~. So, what this is saying is that -x == (~x) + 1. This
is a very convenient property, since it lets us do addition without worrying about whether the number is in two’s
complement or not. (C0 doesn’t have any unsigned types but other languages, including C, do and this property
allows for simpler hardware: we can use the same circuits to add unsigned and signed numbers.)

For example, let’s calculate 5+−5. 5 = 4+1 = 1 ∗ 22+1 ∗ 20, so its binary representation (if our integers are 4 bits
long) is 0101. If we flip the bits, we get 1010, and if we then add 1 to that, we get 1011. Now let’s do the addition:

0101
+ 1011

10000

However, since we’re working with 4 bits, we have nowhere to store that leading 1, so the final answer that the CPU
reports is 0000. So, in this case, two’s complement worked out: 5 +−5 = 0.

For another example, let’s calculate 5 +−1 in two’s complement arithmetic.

We already know that 5 = 0101. To find what −1 is, we take 0001, flip all of the bits, and add 1, giving us that -1
= 1110 + 1 = 1111.

Let’s add to verify.

0101
+ 1111

10100

But again, this gets truncated to just the last 4 bits, which is 0100, which we can verify is 4.

To get a bit more formal, a k-digit two’s complement number n is defined as follows: .

n = −dk−12
k−1 +

k−2∑
i=0

di2
i

So, in a 4-bit two’s complement system, −5 = 1011 = −1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = −8 + 2 + 1.

The fact that we negate the most significant bit is what causes two’s complement to work the way it does. If just the
most significant bit is on, then the number is as small as it can be, because we’re only subtracting and not adding.
If every bit is on, we come close to canceling out the negative, but are just short of it, since

∑n−2
i=0 2i = 2n−1 − 1.

Now, let’s formally prove that flipping the bits and adding 1 does, in fact, produce the negation. Work on this by
yourself or with other people to prove this.

2

Overflow
Overflow can cause potentially nasty bugs, so it’s often advisable to check that your operations will not cause overflow
before performing them. For example, let’s add 7 + 1 using two’s complement arithmetic:

0111
+ 0001

1000

But 1000 = −1 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 0 ∗ 20 = −8. So 1 + 7 = -8 in four-bit two’s complement arithmetic, which
is not what we wanted to happen. (Similarly, -8 - 1 does strange things—you should play with that and see what
happens.)

There’s some more weird behavior when we negate the minimum int. (In a 4-bit system, that’s 1000.) First, we flip
the bits and get 0111. Next, we add 1 and get 1000, which is what we started with. That’s an important oddity to
be aware of: if you negate the minimum integer, you get the minimum integer back. This is related to the fact that
there is one fewer strictly positive number than there are strictly negative numbers. (Which, in turn, is because of
0.)

So, clearly, overflow is bad. Write a precondition for a function safe_add that uses a precondition to ensure that
overflow cannot happen.

1 int safe_add(int x, int y)
2 /∗@requires
3 @ ||

4 @ ||

5 @ || ;

6 @∗/
7 {
8 return x + y;
9 }

ARGB images
We can represent colors using bits, too. In assignment 1, we represent images in an image format that uses the ARGB
color scheme: Alpha (transparency level), red, green, blue.

We split a 32-bit integer into 8-bit sections, 1 each for each of those sections.

Here’s a helpful visualization from Wikipedia:

(for a color version, you can look on http://symbolaris.com/course/pic13-schedule.html).

Each of these “ints” (really, they’re just sequences of 32 bits that we can pretend are ints) is one pixel in an image.
We can store an array of these pixels which, along with width and height data, allows us to construct an image.

You’ll take advantage of this fact on homework 1, and we’ll talk more about ARGB images and manipulating bits in
recitation on Friday.

3

http://symbolaris.com/course/pic13-schedule.html

