
15-122: Principles of Imperative Computation

Recitation 4 Solutions Josh Zimmerman

Bit maniuplation
Let’s look at some examples of masking so you can get a better idea of how it’s used. First, let’s write
a function that, given a pixel in the ARGB format, returns the green and blue components of it. Your
solution should use only &.

Solution:

1 typedef int pixel;
2 int greenAndBlue(pixel p)
3 //@ensures 0 <= \result && \result <= 0xffff;
4 {
5 // We only want the lower 16 bits of p, so and the others with 0
6 // to get rid of them
7 return p & 0xffff;
8 }

Now, let’s write a function that gets the alpha and red pixels of a pixel in the ARGB format. Your
solution can use any of the bitwise operators, but will not need all of them.

Solution:

1 typedef int pixel;
2 int alphaAndRed(pixel p)
3 //@ensures 0 <= \result && \result <= 0xffff;
4 {
5 // First, we want to put the top 16 bits in the bottom of the number.
6 // Then, we want to get rid of any sign extension that the right shift
7 // caused, so we use a mask to get rid of anything above the bottom 16
8 // bits
9 return (x >> 16) & 0xffff;

10 }

Arrays
Here’s a slightly more complicated loop: it’s a function that calculates the nth Fibonacci number more
efficiently than the naive recursive implementation. Assume that we have a function:

int slow_fib(int n)
//@requires n >= 0;
;

that calculates Fibonacci recursively, and obeys all of the mathematical properties of the Fibonacci
sequence. We don’t worry about overflow for now – Fibonacci only uses addition, so we can think of it
as being defined in terms of modular arithmetic.)

1



1 int fib(int n)
2 //@requires n >= 0;
3 //@ensures \result == slow_fib(n);
4 {
5 int[] F = alloc_array(int, n);
6 if (n > 0) {
7 F[0] = 0;
8 }
9 else {

10 return 0;
11 }
12 if (n > 1) {
13 F[1] = 1;
14 }
15 else {
16 return 1;
17 }
18 for (int i = 2; i < n; i++)
19 //@loop_invariant 2 <= i && i <= n;
20 //@loop_invariant F[i − 1] == slow_fib(i − 1) && F[i − 2] == slow_fib(i − 2);
21 {
22 F[i] = F[i − 1] + F[i − 2];
23 }
24 return F[n − 1] + F[n − 2];
25 }

Fill in the blanks in the code to show that there are no out of bounds array accesses.

Are the invariants strong enough to prove the postcondition?

Solution:

Array access

The conditions above are necessary and sufficient to show that there are no out of bounds array accesses.
Before we reference F[0] or F[1], we check with conditional statements (lines 7 and 13) to make sure
the accesses are in bounds.

Then, in the loop, our loop invariant guarantees that 2 <= i. Thus, when we access F[i - 2], we can
be sure that i - 2 >= 0, so we won’t be attempting to access a negative array element. Further, we
know that i < n by the loop exit condition and n == \length (F), so accessing F[i] can’t cause any
problems. (Neither can accessing F[i - 1]—i - 1 is between i - 2 and i.)

Then, when we access F[n - 1] and F[n - 2] on line 25, we know that n == \length (F), and that
n > 1. Since n > 1, n > n - 2 >= 0, so accessing n - 2 is fine. Accessing F[n - 1] is okay since n
== \length (F) and n - 1 must also be positive.

Showing that the postcondition holds.

For the first loop invariant: We know i >= 2 initially since it was initialized to 2. We know i <= n
since if n were less than 2, we would already have returned.

i’ == i + 1. Since 2 <= i, 2 <= i’ as well (assuming no overflow). Further, by the loop guard, i <
n. Thus, i’ <= n.

2



For the second loop invariant:

If we assume that slow_fib follows the mathematical definition of Fibonacci correctly, we can show
that the loop invariant holds at the start of the loop: slow_fib(1) == 1 == F[1] by line 14 and
slow_fib(0) == 0 == F[0] by line 8.

Then, we can show that it is preserved. F[i] == F[i - 1] + F[i - 2]. By the loop invariant, F[i -
1] == slow_fib(i - 1) and F[i - 2] == slow_fib(i - 2), so F[i] == slow_fib(i). Also, i’
= i + 1 (so i’ - 1 == i). Thus, slow_fib(i’ - 1) == F[i’ - 1]

Further, by the loop invariant, slow_fib(i - 1) == F[i - 1], so slow_fib(i’ - 2) == F[i’ -
2].

Finally, at the end of the loop, we know i == n by the loop invariant and the negated loop exit condition.
So, we know that F[n - 1] + F[n - 2] == slow_fib(n). Then we return that quantity, so we know
that our postcondition is correct.

Termination

The loop terminates since i starts out as a number less than n and is incremented by 1 each iteration
until it reaches n, which must happen since n and i are finite.

3


