
Unit Testing as Hypothesis Testing

Jonathan Clark

September 19, 2012

You should test your code. Why? To find bugs. Even for seasoned programmers, bugs
are an inevitable reality.

Today, we’ll take an unconventional view of unit tests: that they’re actually a form of
hypothesis testing. While hypothesis testing is usually used as a means of making scientific
claims in research, for the purposes of this lesson, hypothesis testing is just a mechanism
for gathering evidence to accept or refute a statement – you won’t need to know about
hypothesis testing for this class; it’s just an analogy.

First, we’ll show how to find bugs with unit tests. There, we emphasize that your starting
assumption should be that your code is incorrect. Later, we’ll see how to use unit tests to
narrow down the location of a known bug. In this case, unit tests can help you refine a broad
hypothesis such as “there’s a bug in my program” to something specific “there’s a bug in a
one-line function called safe_add”.

You should walk away with these big points:

• Use unit tests to probe error-prone conditions such as boundary cases

• Use unit tests to aid you in debugging by narrowing down where bugs may be

• Use unit tests to check your contracts

• Use unit tests to verify that failure cases do fail with an error

• Try to write tests that cover many code paths

• Invest time in your tests and you will save time in the long run. Really.

1 Unit Tests Find Bugs by Probing Error-Prone Conditions

Null Hypothesis: My code is incorrect.

You should believe this until you produce overwhelming evidence to the contrary.

To gather evidence against this hypothesis (or for it), you should consider how your code
will behave in situations that are simple, extreme, non-obvious, pathological, unlikely, sick,
twisted, depraved, despicable, or otherwise nasty. Less colloquially, we refer to such cases as

1



boundary cases (or edge cases): inputs that are valid according to the specification, but
are in some sense at a minimum, maximum, a or critical point with regard to some context;
inputs that are nearby these points may also be considered boundary cases. For example,
most programming languages have a minimum and maximum value of their integer type.

Coming up with error-prone cases is itself a creative process in which you should take
on a different persona: The Idiot User from Hades or a Meticulous Calculating Demolition
Expert. However, you may have less luck coming up with these cases if you start with the
assumption that your code is correct.

A good place to start is by examining the restrictions placed on each function. These can
come from the function’s documentation, the type of each parameter, and contracts. The
user rightfully expects that any value within these restrictions will work.

2 Aside: But Don’t Contracts Take Care of This?

First, contracts in C0 are dynamic – they’re checked at runtime rather than being statically
proven true by the compiler.1 So your contracts are only as reliable as the tests that exercise
them. (Later, we’ll see that contracts can likewise make your tests more useful as well). You
could also consider contracts and unit tests as two sides of the same coin: when you reason
with contracts, you’re trying to deductively prove your program is correct; when you write
unit tests, you’re trying to disprove the correctness of your program by counterexample.

Question: Do unit tests allow us to prove/verify the correctness of a program?

Writing good contracts forces you to reason through your code (something you should
always be doing anyway) to the point where you should have convinced yourself that you
have proven your code to be correct. However, humans are imperfect when it comes to
evaluating logical instructions. To claim something is correct does not make it so. Donald
Knuth, a father of modern computer science, once said,2

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

Automobile engineers design cars to be safe according to known physical laws – they also
smash their cars with crash test dummies in them at great cost to make sure they behave as
expected. While not cheap, good tests are a worthwhile investment.

3 Unit Tests Refine Hypotheses about a Bug’s Location

Starting Hypothesis: There’s a bug in my program... somewhere.

So you ran your program via your main() function. It didn’t give you the output you
expected. Now what? Ideally, your unit tests and/or contracts would have caught the bug
before we got here (make a mental note to write better unit tests next time around) – but
here we are. Here’s a rough algorithm for squashing bugs:

1Statically proving program correctness is an active area of research. CMU offers course 15-414 and Prof.
Edmund Clarke has published widely in this area.

2http://www-cs-faculty.stanford.edu/~knuth/faq.html

2



1. Add to your list of hypotheses as to where you believe the bug is likely located – these
will usually be names of functions.

2. Choose the location where you believe the bug is most likely located. You may have
to start with main()

3. For that function, note the input values that caused your program to fail. You may
need to use print() or a stepping debugger to find out.

4. Write a unit test for that function that uses those input values. You should manually
determine what the correct, expected output is.

5. If the function fails your test, you can narrow your hypothesis – the bug (or one of the
bugs) is in that function.

6. Repeat.

Let’s say you’ve narrowed your bug hunt down to function x(). But x() has a large
number of potential child function calls – or all of its child function calls are passing your
tests and you’re left with several lines where the bug could be. This is probably a good time
for refactoring: move blocks of code that are swimming in a larger function to very small
functions so that they can be individually tested. In extreme bug hunts, you may end up
with a small number one-line functions.

4 Unit Tests Exercise Contracts

Null Hypothesis: My contracts disallow some inputs that are reasonable according to
the spec.

Incorrect contracts on top of an otherwise correct function can cause spurious errors
during execution and can cause the user of your code to incorrectly reason about it. Thorough
testing can help you spot these issues.

5 Unit Tests Verify Fail-Fast Behavior

Null Hypothesis: My contracts allow invalid inputs – my code will fail silently when
preconditions are not met.

Good error messages dramatically narrow your hypothesis space of Why Things Failed.
For example, writing good contracts and evaluating them at runtime can quickly tell you
when and where your assumptions have been violated.

However, contracts that don’t enforce the conditions that the programmer believes they
should can be counter-productive: If you believe that a function’s preconditions are being
met, you are likely to look elsewhere for a bug first. Bad contracts can misguide your
debugging efforts. Therefore, it’s important to get them right and test that contracts fail
when they should.

3



So far, our tests have used assert, but we don’t have that option here – we expect these
cases to fail and annotation failures in C0 cause programs to exit immediately. So instead,
we keep a list of function calls that should fail in a file called safe add fail.coin and use
an I/O redirect to pipe it to coin -d. We can then do a quick manual inspection to make
sure that the contracts enforced our preconditions as expected.

6 Testing Glossary

The following glossary is adapted from William Lovas’ March 24, 2011 lecture notes:

black box testing testing only with regard to the specification of the function – its type
and its contracts – without looking at any of its source code. this can be particularly useful
when a function has strong contracts that describe its intended behavior very clearly. Make
creative use of equivalence classes and boundary cases to generate good tests.

glass box / white box testing testing based on looking at the body of a function, trying
to come up with tests that fully exercise all of its code paths and the boundary cases of each
of those code paths.

code coverage the amount of paths through your code that are exercised by your tests.

boundary cases / edge cases inputs that are valid according to the specification, but
are in some sense at a minimum, maximum, a or critical point with regard to some context;
inputs that are nearby these points may also be considered boundary cases. for example,
most programming languages have a minimum and maximum value of their integer type.
Examples:

• for integers, 0, 1, -1, min int, max int, min int + 1, max int - 1

• for arrays, the empty array, a singleton array, an array having max int elements

• for pointers, a null pointer

corner cases pathological conditions that arise at the intersection of multiple edge cases.
for example, when all of a function’s inputs are set to max int.

equivalence class a set of tests such that any test in the set should yield the same
behavior. for example, when tesitng binary search, the test “search for 5 in [10,12]” is in the
same equivalence class as “search for 0 in [1,2]”.

regression testing running old tests on new code to make sure that previously correct
code was not broken while being extended or modified. sometimes fixing new bugs accidentally
re-introduces old bugs. proper regression testing implies that your tests should be automated.

4



test-driven development the practice of writing tests before writing code, using the
precise language of test cases to clarify a program’s specification before development begins.

unit testing testing small pieces of functionality to make sure they behave as intended
before using them in a larger program. unit testing helps pin bugs down early and isolate
the cause of bugs.

blind debugging having no idea why a program is behaving in an unexpected manner,
and making random perturbations to the code in the hopes that they might suddenly fix
everything. also disparigingly referred to as debugging a blank screen. typically, this is
counter-productive and results from frustration. best combatted using the testing techniques
above.

5


