
15-122: Principles of Imperative Computation

Recitation 12a Solutions Josh Zimmerman

modpow_one
Let’s consider the function modpow_one(a, b, c) which computes (ab) % c. This function has many
practical applications, including being a key part of the RSA cryptography algorithm.

1 int modpow_one(int a, int b, int c)
2 //@requires a >= 0 && b >= 0 && c > 0;
3 //@requires c − 1 <= int_max()/max(a, c − 1);
4 //@ensures 0 <= \result && \result < c;
5 {
6 int res = 1 % c;
7 while (b > 0)
8 //@loop_invariant 0 <= res && res < c;
9 {

10 res ∗= a;
11 res = res % c;
12 b−−;
13 }
14 return res;
15 }

Prove that this function satisfies its postcondition.

Solution:

Precondition and initial lines of code imply loop invariant. By the precondition on line 2, we know
that c > 0. In addition, we set res equal to 1 % c (which must be at least 0 and less than c
since 0 < c and 0 <= 1) on line 6. So, since 0 <= (1 % c) && (1 % c) < c), we know the
loop invariant holds initially.

Preservation of the loop invariant. Assume that at the start of some iteration of the loop,
0 <= res && res < c).

We know res’ == (a * res) % c (this doesn’t overflow since res <= c - 1 and c - 1 <=
int_max()/a, and doesn’t cause division errors since c > 0).

Since res * a doesn’t overflow and both res and a are non-negative, res * a is non-negative.
Further, c is positive, so by the definition of the modulo operator 0 <= (res * a) % c < c.
Hence, 0 <= res’ < c and so the loop invariant is preserved.

Loop invariant and negated loop guard imply postcondition In this case, we don’t need the negated
loop guard. By the loop invariant, 0 <= res && res < c.

We return res, so 0 <= \result && \result < c.

Termination When we start, b >= 0. Each iteration of the loop, we decrement b, so b will eventually
be 0 and we’ll break out of the loop.

1



modpow_two
Now we’ll look at a different implementation, modpow_two.

1 int modpow_two(int a, int b, int c)
2 //@requires a >= 0 && b >= 0 && c > 0;
3 //@requires (c − 1) <= int_max()/max(a, c − 1);
4 //@ensures \result == modpow_one(a, b, c);
5 {
6 int res = 1 % c;
7 int pow = 0;
8 while (pow < b)
9

10 __________________________________________________

11
12 __________________________________________________

13 {
14 if (0 < pow && pow <= b/2) {
15 res ∗= res;
16 res = res % c;
17 pow ∗= 2;
18 }
19 else {
20 res ∗= a;
21 res = res % c;
22 pow++;
23 }
24 }
25 return res;
26 }

Is this function asymptotically faster than, slower than, or the same speed as modpow_one? Explain.

Solution: This is asymptotically the same speed as modpow_one. This is because once pow > b/2
we must run at worst b/2 steps. b

2 ≤ 1
2 ∗ b for all b, so modpow_one is O(b), just as modpow_one is.

(In practice, modpow_two is faster than modpow_one, since the part of the loop where pow <= b/2 is
much much faster than the first half of the modpow_one loop, but asymptotically they are the same
speed.)

Write loop invariants for modpow_two.

Solution: From looking at the body of the loop, we can see that pow keeps track of the current power
we’ve raised a to.

At the end of the function, we want to return modpow_one(a, b, c). We return res, so it’d be helpful
if our loop invariant told us something about that. Since pow is the current power, a relevant loop
invariant is //@loop_invariant res == modpow_one(a, pow, c);.

But just that alone isn’t strong enough. We also need some way of making sure that pow == b at the
end–otherwise, we won’t be able to prove our postcondition.

So, we can have a loop invariant //@loop_invariant 0 <= pow && pow <= b;

So, our loop invariants are:

2



//@loop_invariant 0 <= pow && pow <= b;
//@loop_invariant res == modpow_one(a, pow, c);

Now, prove that if the preconditions to modpow_two are satisfied, it satisfies its postcondition.

If it helps, you can assume that 00 = 0, even though it’s actually indeterminate. You can also assume
that modpow_one obeys the properties that
(modpow_one(a, b, c) * a) % c == modpow_one(a, b + 1, c) and
(modpow_one(a, b, c) * modpow_one(a, b, c)) % c == modpow_one(a, 2*b, c)

Solution:

Preconditions and initial lines of code imply loop invariant We set pow to 0 on line 7 and we know
b >= 0 by the precondition, so 0 <= pow && pow <= b.

We’ve set res to 1 % c (on line 6), and pow is 0. modpow_one(a, 0, c) is equivalent to 1 % c,
since a0 = 1 for any a. So, res == modpow_one(a, pow, c).

Thus, the loop invariants hold before the first iteration of the loop.

Preservation of loop invariants Assume 0 <= pow && pow <= b and res == modpow_one(a, pow, c).

We split into cases.

If 0 < pow and pow <= b/2, then: res’ == (res * res) % c and pow’ == pow * 2.

By the loop invariant, this means that res’ == (modpow_one(a, pow, c) * modpow_one(a,
pow, c)) % c

But, by our assumption above, this is equal to modpow_one(a, 2*pow, c).

Since pow’ == 2*pow, this means that res’ == modpow_one(a, pow’, c). Thus, the second
loop invariant holds.

The first invariant holds since pow <= b/2 and pow’ == 2 * pow. That means that pow <= b
(division rounds down, so this can’t possibly be greater than b). We know 0 <= pow since we
increased pow and there was no overflow.

In the second case, res’ == (res * a) % c and pow’ = pow + 1.

The first loop invariant is preserved since pow < b (by the loop guard), so pow’ <= b. We know
pow’ > pow and pow >= 0 by the loop invariant, so pow’ >= 0. So, the first invariant is preserved
in this case.

res’ == (modpow_one(a, pow, c) * a) % c, which by our assumption is equal to modpow_one(a,
pow + 1, c).

Since pow’ == pow + 1, this means res == modpow_one(a, pow’, c). Thus, the second loop
invariant is preserved in this case.

Thus, both loop invariants are preserved.

3



Loop invariants and negated loop guard imply postcondition The negated loop guard is pow >=
b. The first loop invariant tells us that pow <= b. Thus, pow == b.

By the second loop invariant, res == modpow_one(a, pow, c). But since pow == b, this means
that res == modpow_one(a, b, c).

We return res, so our postcondition is satisfied.

Termination pow starts out at 0 and is strictly increasing, so it will eventually be as large as b. At that
point, the loop terminates. (pow won’t overflow since b is a positive int)

Thus, pow_fast returns the same result as pow_slow.

4


