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1 Modular Arithmetic

In CO, values of type int are defined to have 32 bits. In this problem we work with a version of
CO where values of type int are defined to have only 9 bits. In other respects it is the same as CO.
All integer operations are still in two’s complement arithmetic, but now modulo 2°. All bitwise
operations are still bitwise, except on only 9 bit words instead of 32 bit words.

Task 1. Fill in the missing quantities, in the specified notation.

a. The minimal negative integer, in decimal:
b. The maximal positive integer, in decimal:
c. —4,in hexadecimal: 0x
d. 44, in hexadecimal: 0x

e. 0x49, in decimal:

Task 2. Assume int x and int y have been declared and initialized to unknown values. For each
of the following, indicate if the expression always evaluates to true, or if it could sometimes be
false. In the latter case, indicate a counterexample in the C0 dialect described here by giving a
value for x and y that falsifies the claim. You may use decimal or hexadecimal notation. You may
use the functions int_min() and int_max () and assume they are correct for 9 bit ints.

a x> x -1

b. "x) ~ (x) == -1

c. x+t(y+1)-2%(x-1)-3 == -x+y

d. x!'=-x || y'=-y) || x==y

e. ((x<<1)>>1) | (x & 0x80) ==

f. (((x>>1)<<1) | (x&1)) == x

g x <= (1<<(7-1))-1

h. x+x == 2x*x




2 Ternary Search.

Consider the following variation of binary search algorithm. Instead of checking the middle ele-
ment of the sorted array A[], check the element at position n/3. Then proceed in the same way as
in binary search. If you are looking for x then

e if x == A[n/3] you have found it.
e if x < A[n/3] you search the first third of the array, namely at indexes < n/3.

e if x > A[n/3] you search the rest two thirds of the array at indexes > n/3.
Consider the following implementation:

int tersearch(int x, int[] A, int n)
//@requires O <= n && n <= \length(A);
//@requires is_sorted(A, n);
/*Q@ensures (-1 == \result && 'is_in(x, A, n))
|1 ((0 <= \result && \result < n) && A[\result] == x);
@/
{
int lower = O0;
int upper = n;
while (lower < upper)
//@loop_invariant 0 <= lower && lower <= upper && upper <= n;

//@loop_invariant lower == 0 || A[lower-1] < x;
//@loop_invariant upper == n || A[upper] > x;
{

int mid = lower + (upper-lower)/3;
if (A[mid] < x)
lower = mid+1;
else if (A[mid] > x)
upper = mid;
else //Q@assert A[mid] == x;
return mid;
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//@assert lower == upper;
return -1;

}

Task 1. Prove the correctness of this function, using the method presented in class.

Task 2. Find an expression for the worst-case runtime of ternary search. Compare this asymptoti-
cally to binary search.



3 Runtime Analysis

Determine the big O complexity of the following expression:

T(n) = 4n° + 100> + logn

Use the formal definition of big O to justify your answer.



