
Idea: When out of space, copy to an array 1 larger.

Start with the empty array.

Question: What's the runtime for n insertions?

$$O(n^{9})$$

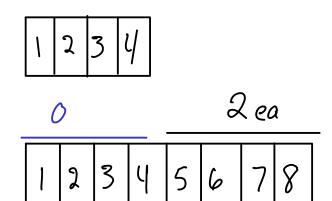
ins	ops
1	l
2	2
3	3
4	Ч
5	5

Idea: When full, double.

For the sake of the example, start with an empty array of size 4.

1	J	3	4	O(n) >		
	•						
I	2	3	4	5	S	7	8

ins	ops	O(?)
1	1	0(1)
2	١	
3	1	
4	1	\downarrow
5	5	0(n)
6	1	0(1)
7	1	
8	Ţ	
9	9	0(v)


Amortized analysis: accounting analysis--how many tokens?

Clearly, 1 won't work. How about 2? Again, start with an initially empty array of size 4.

	budget	spend	left over (cumulative)
1	Q	\	1
2		I	2
3		ι	3
4		1	4
5		5	1
6		١	2
7		١	3
8		1	Υ
9	V	9	6-9 = bad.

Ok, how about 3?

1	budget 3	spend I	left over (cumulative)
2		ţ	Ч
3		I	6
4		t	86 11-5=6 –
5		5	_
6		l	8
7		١	10
8		1	12
9	V	9	15-9-6

3 tokens -> ins EO(1)

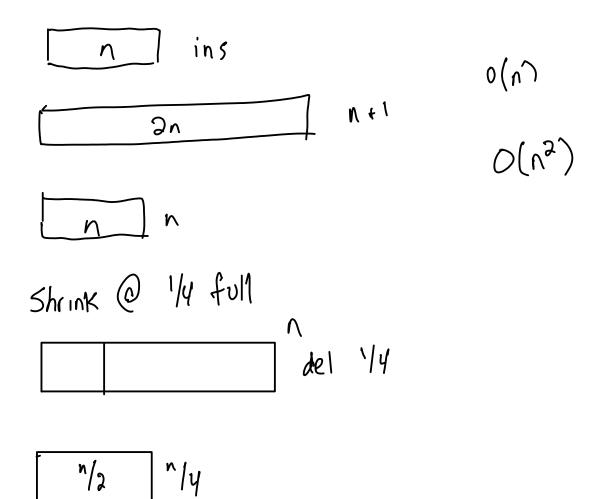
3 Tokens Pay For:

- 1. Initial insertion
- 2. Move self
- 3. Move someone in 1st half,

n ins O(n)

Ok, but this isn't really interesting yet. How about the general case? Immediately after resize, assume 0 left over tokens.

$$2^{i} \longrightarrow 2^{i+1} \qquad 0...2^{i-1} \qquad 2^{i} \qquad Marker$$


$$(2^{i+1}-1)-2^{i} \qquad \text{ins}$$

$$2^{i}-1 \qquad \text{ins} \longrightarrow \text{full} \qquad \text{copy} \qquad 2^{i+1}$$

$$2(2^{i}-1) \quad \text{extra tokens} \qquad \text{insert} \quad \text{new}$$

$$2(2^{i}-1)+3=2^{i+1}+1 \qquad \qquad 2^{i+1}+1$$

When to shrink? How about we halve the array when half full?

