
15-122: Principles of Imperative Computation

QuickCheck 5 Solutions

This QuickCheck will be conducted towards the end of recitation. You will have fifteen minutes to do
this. Your TA will go over answers at the end.

Name:

Andrew ID:

Section (circle one): A B C D E F G H

Congratulations! Simplicio and Sagredo (you) have landed a summer internship at Facegook’s internal
tech division. And, by a stroke of good luck you are both on the same team!

Your project involves dealing with a lot of employee data, so you need a way to be able store employee
records, so that you can access them in constant time. Your mentor, Salviati has already created a
generic hash table library, which allows a value elem to be stored based on it’s unique key.

In order to use the hash table, you need to provide the client code. The employee information is repre-
sented by the following struct -

1 struct employee_info{
2 int emp_id;
3 string first_name;
4 string last_name;
5 int wage;
6 };
7 typedef struct employee_info∗ employee;

It’s obvious that employees will be stored as values in the hash table. Given the fields above, what do
you think is the appropriate key?
emp_id

Now fill in the required information below that the client (you) need to provide the library -
1 //set elem to employee
2 typedef employee elem;

3
4 //set the key type
5 typedef int key;

6
7 key elem_key(elem e){
8 return e->emp_id;

9 }
10
11 bool key_equal(key k1, key k2){
12 return k1 == k2;
13 }

1



Now you need to do some analysis on the pay that employees are receiving. Salviati gives you an array
of n employees sorted by wage. The wages are unique. You decide to create a Binary Search Tree of
the data, for use in the analysis.

Again, elem is employee. But the key might not be the same. What is the appropriate key for the
BST?
wage

This is what Simplicio has come up with for creating the BST -

1 bst make_tree(employee[] E, int n){
2 bst B = alloc(struct bst_header);
3 for(int i = 0; i < n; i++){
4 bst_insert(B, E[i]);
5 }
6 return B;
7 }

What’s a problem with this code?

Solution: It results in a worst-case BST that looks like a linked list

Fill in the following code that returns a BST close to the optimum case -
(Hint: Keep in mind the algorithm for binary search and remember that the array is sorted by wage)

1 bst make_tree(employee[] E, int n){
2 bst B = alloc(struct bst_header);
3 B−>root = create(E, 0, n);
4 return B;
5 }
6
7 tree∗ create(employee[] E, int lower, int upper){
8 if(lower == upper) return NULL;
9 int mid = lower + (upper - lower)/2;

10 tree∗ T = alloc(struct tree_node);
11 T−>data = E[mid];
12 T−>left = create(E, lower, mid);
13 T−>right = create(E, mid + 1, upper);

14 return T;
15 }

2



Now, you’ve been told that your actual assignment involves finding the employee with the lowest wage
in the company. Using the BST would involve O(log(n)) time. So, it’s better to use a priority queue
that can do it in O(1) time.

Assume that you have created a priority queue H which has wage as the key and employee as the elem.

You are given the state legal minimum wage min_wage. You need to write a function that raises the
pay of any employees whose current pay is below the legal minimum wage to the legal minimum wage.

e.g If the wages of employees A, B, C and D are (3, 1, 4, 2) and the min_wage is 3, after you run your
function, wages should be (3, 3, 4, 3) respectively.

Fill in the the blanks below to create the required function.

1 void adjust_wages(heap H, int min_wages){
2 while(elem_key(heap_min(H)) < min_wage)){

3 //remove the element with the minimum wage
4 employee temp = heap_delmin(H);

5 //replace temp’s wage with the minimum wage
6 temp->wage = min_wage;

7 //insert temp back into the heap
8 heap_insert(H, temp);

9 }
10 }

3


